Journal of Molecular Catalysis A-Chemical, Vol.391, 175-182, 2014
Bi7O9I3/reduced graphene oxide composite as an efficient visible-light-driven photocatalyst for degradation of organic contaminants
Bi7O9I3/reduced graphene oxide (RGO) composite with visible light response was fabricated by a facile solvothermal method. The prepared samples were characterized by means of powder X-ray diffraction (XRD), scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), Raman spectra, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS), and photoluminescence (PL) emission spectroscopy. The photocatalytic activity of the Bi7O9I3/RGO composite was evaluated by the degradation of rhodamine B (RhB) and phenol under visible irradiation (lambda > 420 nm). The results indicated that the Bi7O9I3 nanoplates dispersed uniformly on RGO surface. The photocatalytic activity of Bi7O9I3/RGO in degradation of RhB and phenol was 2.13 and 2.29 times that of pure Bi7O9I3, respectively. The enhanced photocatalytic activity can be attributed to more effective charge transportations and separations, the high pollutant adsorption performance, and the increased light absorption. In addition, the Bi7O9I3/RGO photocatalyst was stable during the reaction and can be used repeatedly. (C) 2014 Elsevier B.V. All rights reserved.