화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.117, No.46, 14215-14225, 2013
Characterization of Cell-Penetrating Lipopeptide Micelles by Spectroscopic Methods
The transport of bioactive compounds to the site of action is a great challenge. A promising approach to overcome application-related problems is the development of targeting colloidal transport systems, such as micelles which are equipped with uptake mediating moieties. Here, we investigated a set of novel lipopeptides which exhibit a surfactant-like structure due to attachment of two palmitoyl chains to the Nterminus of cationic or anionic amino acid sequences. We analyzed the association behavior of these lipopeptides by using 5(6)-carboxyfluorescein (CF)-labeled derivatives as a fluorescent probe and different spectroscopic methods such as fluorescence anisotropy and fluorescence correlation spectroscopy (FCS). The photophysical properties as well as the diffusion and rotational movements of the CF-labeled lipopeptides were exploited to determine the cmc and the size of the micelles consisting of lipopeptides. We could distinguish cationic and anionic lipopeptides by their association behavior and by studying the interactions with mouse brain capillary endothelial cells (b.end3). The cationic derivatives turned out to be very strong surfactants with a very low cmc in the micromolar range (0.5-14 mu M). The unique combination of micelle-forming property and cell-penetrating ability can pave the road for the development of a novel class of efficient drug carrier systems.