화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.117, No.49, 15519-15526, 2013
Aqueous Colloidal Acene Nanoparticles: A New Platform for Studying Singlet Fission
Singlet fission is a process that occurs in select molecular systems wherein a singlet excited state divides its energy to form two triplet excitations on neighboring chromophores. While singlet fission has been largely studied in molecular crystals, colloidal nanoparticles offer the ability to investigate fission using liquid suspensions, allowing questions regarding the importance of molecular arrangement and charge transfer to be assessed. Herein, we report the synthesis of aqueous colloidal nanoparticles of 5,12-diphenyltetracene (DPT), a material recently demonstrated to undergo singlet fission in disordered films. Upon synthesis, nanoparticles display absorption features that lie between those of monomeric DPT and disordered DPT films. These features evolve over a few days in a manner that suggests an increase in the degree of association between neighboring molecules within the nanoparticles. Transient absorption and time-resolved emission experiments indicate that photoexcited DPT nanoparticles undergo fission, but produce a lower triplet yield than disordered films.