화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.117, No.49, 15886-15893, 2013
Non-Boltzmann Population Distributions during Single-Bubble Sonoluminescence
Single-bubble sonoluminescence (SBSL) spectra from aqueous sulfuric acid solutions containing dissolved neon show widely varying emission despite being similar in chemical composition. From a 65 wt % solution, emission from hydroxyl radicals is observed, with the rovibronic progression being well-described by a single temperature of 7600 K. From an 80 wt % solution, however, emission spectra reveal vibrationally hot sulfur monoxide (SO; T-v = 2400 K) that is also rotationally cold (T-r = 280 K). Further, the SO vibrational population distribution is best-described by a non-Boltzmann distribution. Excited neon atom emission observed from the 80 wt % solution gives an estimated temperature of only 3400 K, indicative of emission from a cool outer shell at the interfacial region. The neon atom excited-state population is also best-described by a non-Boltzmann distribution. These observations are consistent with SBSL emission having both a spatial and temporal component, and the implications for these effects are discussed.