Journal of Power Sources, Vol.199, 367-372, 2012
Characterization and optimization of a printed, primary silver-zinc battery
The increasing deployment of ubiquitous electronic systems such as distributed sensor networks and RFID tags has resulted in a need for high energy microbatteries. Printed batteries are particularly interesting because of the potential for low material loss, low processing cost, and ease of integration into low-profile flexible electronic systems. We have developed a two-step printing technique to deposit an alkaline electrolyte for a printed silver-zinc battery. The fabricated batteries are characterized with galvanostatic measurements and electrochemical impedance spectroscopy using a three electrode setup with a zinc reference electrode. High silver utilization of 94 +/- 3% and an areal energy density of 4.1 +/- 0.3 mWh cm(-2) are achieved with a 57:29:14 H(2)O:KOH:PEO (M(v) = 600,000) electrolyte at a C/2 discharge rate 1.8 mA cm(-2). (C) 2011 Elsevier B.V. All rights reserved.