Journal of Power Sources, Vol.208, 24-34, 2012
Direct two-dimensional electrochemical impedance spectra simulation for solid oxide fuel cell
A two-dimensional (2D) EIS simulation approach is developed by solving a SOFC unit cell model with imposed sinusoidal voltage perturbations at different frequencies. The transient SOFC unit cell model describes the intricate interdependency among the ionic/electronic conduction, multi-component species transport, electrochemical reaction processes and electrode microstructure as well as the coupling processes of mass, energy, momentum transport within flow channels. The model calculates the local transient response and impedance spectra as a function of channel position. The effects of the reaction depletion, product accumulation as well as the temperature variation along the flow channels on the EIS spectra are numerically simulated with a counter-flow mode. The results show that the convection-diffusion process along the flow channel has significant effects on the low frequency half circle of the impedance spectra. The temperature oscillations accumulate along the flow channels, and then affect the current responses which probably lead to an electro-thermal impedance effects. (C) 2012 Elsevier B.V. All rights reserved.
Keywords:Solid oxide fuel cell;Electrochemical impedance spectra;Modeling;Local impedance;Electro-thermal effect