Journal of Power Sources, Vol.220, 185-192, 2012
Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application
A modified electrode for vanadium redox flow battery (VRFB) has been developed in this paper. The electrode is based on a traditional carbon felt (CF) grafted with the short-carboxylic multi-walled carbon nanotubes (MWCNTs). The microstructure and electrochemical property of the modified electrode as well as the performance of the VRFB single cell with it have been characterized. The results show that the MWCNTs are evenly dispersed and adhere to the surface of carbon fibres in the CF. The electrochemical activities of the modified CF electrode have been improved dramatically and the reversibility of the VO2+/VO2+ and V-3(+)/V-2(+) redox couples increased greatly. The VRFB single cell with the modified CF exhibits higher coulombic efficiency (93.9%) and energy efficiency (82.0%) than that with the pristine CF. The SEM analysis shows that the MWCNTs still cohere with carbon fibres after charge and discharge test, indicating the stability of the MWCNTs in flowing electrolyte. Therefore, the composite electrode presents considerable potential for the commercial application of CF in VRFB. (C) 2012 Elsevier B.V. All rights reserved.