화학공학소재연구정보센터
Journal of Power Sources, Vol.233, 331-340, 2013
Ni/YSZ solid oxide fuel cell anodes operating on humidified ethanol fuel feeds: An optical study
Direct internal steam reforming of ethanol fuel in solid oxide fuel cells (SOFCs) has been investigated using near-infrared thermal imaging. Thermal data are correlated to electrochemical analyses, post-mortem photographs of the cells and gas-phase infrared (FTIR) spectroscopy. These techniques allow for an understanding of how gas-phase composition and electrical conditions affect the fuel chemistry on the anode, specifically with regards to carbon formation. Ethanol flows that are humidified to H2O:C2H5OH ratios of 1.58, 1.27, and 1.12 at 700, 750, and 800 degrees C, respectively, result in far less anode damage than dry ethanol. However, subtle spatial variations in anode surface temperature indicate that damage occurs at temperatures below 800 degrees C. FTIR spectra of the fuel feed reaching the anode show that internal steam reforming occurs both in the gas phase and at the anode catalyst. Thermal imaging and post-mortem analysis confirm that humidified ethanol flows at 800 degrees C form negligible amounts of carbon deposits in polarized cells, resulting in minimal anode deterioration. These results serve as benchmark data for the further development of direct, internal reforming SOFC systems, especially in smaller, portable systems. The H2O:C2H5OH ratio used in this work is well below the >3:1 ratios suggested elsewhere. (C) 2013 Elsevier B.V. All rights reserved.