Journal of Power Sources, Vol.237, 58-63, 2013
Electricity production and electrochemical impedance modeling of microbial fuel cells under static magnetic field
Two-chamber microbial fuel cells (MFCs) were exposed to static magnetic field (MF) of field strengths 0 mT, 100 mT, 200 mT, and 300 mT, and the electricity production of the MFCs under the influence of the MF was investigated using electrochemical methods. The results show that the start-up periods of MFCs in MF were shorter than that without. The MFC with a 100-mT MF needed the shortest time (7 days) to obtain a stable voltage output. The maximum power density of 1.56 W m(-2) was for a field strength of 200 mT, which was the best among the MFCs. The impact of the MF on the charge transfer resistances (R-ct) of the anode, cathode, and whole MFC was analyzed by electrochemical impedance spectroscopy (EIS). A new method was developed to extend the equivalent circuit (EC) model to the whole MFC by connecting the anode and cathode models in series. The simulated results show that anode Rct values are much higher compared than at the cathode. The cell and anode R-ct values were reduced by 56.6% and 57.2%, respectively, for the 200-mT MF. It was also found that there is an optimal intensity MF range for the microorganisms. (C) 2013 Elsevier B.V. All rights reserved.
Keywords:Microbial fuel cell;Magnetic field;Power density;Electrochemical impendence spectroscopy;Charge transfer resistance