화학공학소재연구정보센터
Journal of Power Sources, Vol.243, 336-342, 2013
Vanadium carbide and graphite promoted Pd electrocatalyst for ethanol oxidation in alkaline media
The vanadium carbide particles with the diameter of 1-3 nm on graphitized resin (GC-V8C7) are synthesized through ionic exchange process. The materials are characterized by XRD, Raman, TEM, SEM and EDS measurements. The results prove that the ion-exchange resin as both carbon source and dispersion media favors the formation of very uniform and small (1-3 nm) V8C7 particles, and protect the V8C7 from conglomeration even at the temperature of 1500 degrees C. Meanwhile, the vanadium compound is found efficient catalytic effect on graphitization of ion-exchange resin, leading to high graphitization degree of GC-V8C7. Pd particles are loaded on the GC-V8C7 materials as electrocatalyst (Pd/GC-V8C7) for ethanol oxidation in alkaline media. The cyclic voltammograms measurements show that both V8C7 and GC (graphitized ion-exchange resin) give Pd electrocatalyst improved catalytic performance in activity, stability and overpotential, compared with that of Pd supporting on Vulcan XC-72 carbon (Pd/C). The present synthesizing method of GC-V8C7 is simple and effective, which can be readily scaled up for mass production of other nanomaterials. (C) 2013 Elsevier B.V. All rights reserved.