화학공학소재연구정보센터
Journal of Power Sources, Vol.256, 137-144, 2014
A simple synthesis of hollow carbon nanofiber-sulfur composite via mixed-solvent process for lithium-sulfur batteries
A hollow carbon nanofiber supported sulfur (HCNF-S) composite cathode material is prepared by a mixed-solvent (DMF/CS2) process in an organic solution for lithium-sulfur batteries. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations show the hollow structures of the HCNF and the homogeneous distribution of sulfur in the composite. The performance of the HCNF-S cathode is evaluated in lithium-sulfur batteries using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. It is found that the HCNF-S cathode shows perfect cycling stability. The results exhibit an initial discharge capacity of 1090 mAh g(-1) and retains 600 mAh g(-1) after 100 discharge/charge cycles at a high rate of 1 C. The excellent electrochemical properties benefit from the hollow and highly conductive network-like structure of HCNFs, which contribute to disperse sulfur and absorb polysulfides, and suppress the formation of residual Li2S layer. (C) 2014 Elsevier B.V. All rights reserved.