Journal of Process Control, Vol.23, No.10, 1415-1425, 2013
Internal model based robust inversion feedforward and feedback 2DOF control for LPV system with disturbance
To reduce the adverse effects on the control performance and disturbance rejection caused by system uncertainty, a novel internal model based robust inversion feedforward and feedback 2DOF control approach was proposed for LPV system with disturbance. The proposed control approach combines the internal model control and robust inversion based 2DOF control, it utilizes internal model based control to reject external disturbance, utilizes robust inversion 2DOF control to enhance the control resolution and guarantee the system control performance. At first, a LMI synthesis approach for LPV system model identification and a disturbance compensator optimization design method which could minimize H-infinity norm of output error caused by disturbance are presented. Then, combined with internal loop for disturbance compensation, a robust inversion feedforward controller is designed by robust inversion approach and the feedback controller which could render the requirements of reference signal tracking performance and robustness satisfied is obtained by the H-infinity mixed sensitivity synthesis approach. Finally, atomic force microscopy (AFM) vertical positioning simulation experiments are conducted and the experiment results showed that the proposed control approach could achieve better output performance and disturbance rejection compared with conventional internal model based control and robust inversion based 2DOF control approach. (C) 2013 Elsevier Ltd. All rights reserved.
Keywords:LPV system;Internal model based control;Disturbance compensation;Robust inversion feedforward and feedback 2DOF;H-infinity mixed sensitivity