Journal of Process Control, Vol.24, No.4, 314-325, 2014
Coalitional model predictive control of an irrigation canal
We present a hierarchical control scheme for large-scale systems whose components can exchange information through a data network. The main goal of the supervisory layer is to find the best compromise between control performance and communicational costs by actively modifying the network topology. The actions taken at the supervisory layer alter the control agents' knowledge of the complete system, and the set of agents with which they can communicate. Each group of linked subsystems, or coalition, is independently controlled through a decentralized model predictive control (MPC) scheme, managed at the bottom layer. Hard constraints on the inputs are imposed, while soft constraints on the states are considered to avoid feasibility issues. The performance of the proposed control scheme is validated on a model of the Dez irrigation canal, implemented on the accurate simulator for water systems SOBEK. Finally, the results are compared with those obtained using a centralized MPC controller. (C) 2014 Elsevier Ltd. All rights reserved.