화학공학소재연구정보센터
Journal of the American Ceramic Society, Vol.97, No.4, 1218-1225, 2014
Topographical and Microstructural Property Evolution of Air Plasma-Sprayed Zirconia Thermal Barrier Coatings
The effects of process parameters on thermal barrier coating (TBC) formation and microstructural properties have been studied. Further understanding of the evolution of properties such as porosity and hardness is an important aspect in the design of efficient TBCs. Plasma-sprayed yttria-stabilized zirconia was coated onto mild steel substrates. The torch was held perpendicular to the substrate to form cone-shaped deposits. Standoff distance (SOD) (80, 90, and 120mm) and time (15, 30, and 60s) were altered to investigate the microstructural property relationships of the coatings. Shape characteristics of the coatings were measured via a coordinate measuring machine, and surface roughness measurements were acquired using a 3D optical profiler. The deposition efficiency and coating roughness were affected by SOD and the evolving contour of the underlying surface. Hardness and porosity profiles were mapped to display the effect of process parameters. Dynamic parameters such as particle trajectory, evolving impact angle and dwell time affected changes in porosity, hardness, and density for each coating profile.