Journal of the American Chemical Society, Vol.136, No.3, 910-913, 2014
Reversible Photochemical Control of Singlet Oxygen Generation Using Diarylethene Photochromic Switches
Reversible noninvasive control over the generation of singlet oxygen is demonstrated in a bicomponent system comprising a diarylethene photochromic switch and a porphyrin photosensitizer by selective irradiation at distinct wavelengths. The efficient generation of singlet oxygen by the photosensitizer is observed when the diarylethene unit is in the colorless open form. Singlet oxygen generation is not observed when the diarylethene is converted to the closed form. Irradiation of the closed form with visible light (>470 nm) leads to full recovery of the singlet oxygen generating ability of the porphyrin sensitizer.