Journal of the American Chemical Society, Vol.136, No.23, 8350-8360, 2014
Dehydrogenative alpha-Oxygenation of Ethers with an Iron Catalyst
Selective alpha-oxidation of ethers under aerobic conditions is a long-pursued transformation; however, a green and efficient catalytic version of this reaction remains challenging. Herein, we report a new family of iron catalysts capable of promoting chemoselective alpha-oxidation of a range of ethers with excellent mass balance and high turnover numbers under 1 atm of O-2 with no need for any additives. Unlike metalloenzymes and related biomimetics, the catalyst produces H-2 as the only byproduct. Mechanistic investigations provide evidence for an unexpected two-step reaction pathway, which involves dehydrogenative incorporation of O-2 into the ether to give a peroxobisether intermediate followed by cleavage of the peroxy bond to form two ester molecules, releasing stoichiometric H-2 gas in each step. The operational simplicity and environmental friendliness of this methodology affords a useful alternative for performing oxidation, while the unique ability of the catalyst in oxygenating a substrate via dehydrogenation points to a new direction for understanding metalloenzymes and designing new biomimetic catalysts.