화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.136, No.28, 10095-10103, 2014
The Photochemical Route to Octahedral Iron(V). Primary Processes and Quantum Yields from Ultrafast Mid-Infrared Spectroscopy
Recently, the complex cation [(cyclam-ac)Fe-III(N-3)](+) has been used in solid matrices under cryogenic conditions as a photochemical precursor for an octahedral iron nitride containing the metal at the remarkably high oxidation state +5. Here, we study the photochemical primary events of this complex cation in liquid solution at room temperature using femtosecond time-resolved mid-infrared (fs-MIR) spectroscopy as well as step-scan Fourier-transform infrared spectroscopy, both of which were carried out with variable-wavelength excitation. In stark contrast to the cryomatrix experiments, a photomddized product cannot be detected in liquid solution when the complex is excited through its putative LMCT band in the visible region. Instead, only a redox-neutral dissociation of azide anions is seen under these conditions. However, clear evidence is found for the formation of the highly oxidized iron nitride product when the photolysis is carried out in liquid solution with UV light. Yet, the photooxidation must compete with photoreductive Fe-N bond cleavage leading to aside radicals and an iron(II) complex. Both, redox-neutral and photoreductive Fe-N bond breakage as well as photooxidative N-N bond breakage occur on a time scale well below a few hundred femtoseconds. The majority of fragments suffer from geminate recombination back to the parent complex on a time scale of 10 Ps. Upper limits of the primary quantum yield for photooxidation are derived from the fs-MIR data, which increase with increasing energy of the photolysis photon.