Journal of the American Chemical Society, Vol.136, No.32, 11483-11493, 2014
Theoretical Elucidation of the Origins of Substituent and Strain Effects on the Rates of Diels-Alder Reactions of 1,2,4,5-Tetrazines
The Diels-Alder reactions of seven 1,2,4,5-tetrazines with unstrained and strained alkenes and alkynes were studied with quantum mechanical calculations (M06-2X density functional theory) and analyzed with the distortion/interaction model. The higher reactivities of alkenes compared to alkynes in the Diels-Alder reactions with tetrazines arise from the differences in both interaction and distortion energies. Alkenes have HOMO energies higher than those of alkynes and therefore stronger interaction energies in inverse-electron-demand Die Is Alder reactions with tetrazines. We have also found that the energies to distort alkenes into the Diels-Alder transition-state geometries are smaller than for alkynes in these reactions. The strained dienophiles, trans-cydooctene and cyclooctyne, are much more reactive than unstrained trans-2-butene and 2-butyne, because they are pralistorted toward the Diels-Alder transition structures. The reactivities of substituted tetrazines correlate with the electron-withdrawing abilities of the substituents. Electron-withdrawing groups lower the LUMO+1 of tetrazines, resulting in stronger interactions with the HOMO of dienophiles. Moreover, electron-withdrawing substituents destabilize the tetrazines, and this leads to smaller distortion energies in the Diels-Alder transition states.