화학공학소재연구정보센터
Langmuir, Vol.30, No.1, 220-226, 2014
Effects of Anionic Surfactants on the Water Permeability of a Model Stratum Corneum Lipid Membrane
The stratum corneum (SC) is the ourtermost layer of the epidermis and has a brick-and-mortar-like structure, in which multilamellar lipid bilayers surround flattened dead cells known as corneocytes. The SC lipid membranes provide the main pathway for the transport of water and other substances through the SC. While the physicochemical properties of the SC can be affected by exogenous materials such as surfactants, little is known about how the water barrier function of the SC lipid membranes is compromised by common surfactants. Here, we study the effect of common anionic surfactants on the water permeability of a model SC lipid membrane using a quartz crystal microbalance with dissipation monitoring (QCM-D). Particularly, the effect of sodium dodecyl sulfate (SDS) and sodium lauryl ether sulfate (SLES) is compared. These two surfactants share commonality in their molecular structure: sulfate in the polar headgroup and the same apolar tail. The mass of the lipid membranes increases after the surfactant treatment at or above the critical micelle concentration (CMC) of the surfactants due to their absorption into the membranes. The incorporation of the surfactants into the lipid membranes is also accompanied by partial dissolution of the lipids from the model SC lipid membranes as confirmed by Fourier-transform infrared (FT-IR) spectroscopy. Although the water sorption of pure SDS is much lower than that of pure SLES, the water sorption of SDS-treated membranes increases significantly similar to that of SLES-treated membranes. By combining QCM-D and FT-IR spectroscopy, we find that the chain conformational order and stiffness of the lipid membranes decrease after SDS treatment, resulting in the increased water sorption and diffusivity. In contrast, the conformational order and stiffness of the SLES-treated lipid membranes increase, suggesting that the increased water sorption capacity of SLES-treated lipid membranes is due to the hygroscopic nature of SLES.