Langmuir, Vol.30, No.3, 700-709, 2014
Direct Printing Synthesis of Self-Organized Copper Oxide Hollow Spheres on a Substrate Using Copper(II) Complex Ink: Gas Sensing and Photoelectrochemical Properties
The direct printing synthesis of metal oxide hollow spheres in the form of film on a substrate is reported for the first time. This method offers facile, scalable, high-throughput production and device fabrication processes. The printing was carried out via a doctor-blade method using Cu(II) complex ink with controllable high viscosity based on formate-amine coupling. Following only thermal heating in air, well-defined polycrystalline copper oxide hollow spheres witha a submicrometer diameter (1 <= mu m) were formed spontaneously while being assembled in the form of a film with good adhesion on the substrate. This spontaneous hollowing mechanism was found to result from the Kirkendall effect during oxidation at elevated temperature. The CuO films with hollow spheres, prepared via direct printing synthesis at 500 degrees C, led to the creation of rough/porous shell structure, a single phase, high crystallinity, and no organic/polymer residue. As a result, the CuO hollow-sphere films showed high gas responses and permissible response speeds to reducing gases and high photocurrent density compared to conventional CuO powder films and the values previously reported. These results exemplify the successful realization of a high-throughput printing fabrication method for the creation of superior nanostructured devices.