Langmuir, Vol.30, No.3, 710-717, 2014
Irreversible Adsorption-Driven Assembly of Nanoparticles at Fluid Interfaces Revealed by a Dynamic Surface Tension Probe
Adsorption-driven self-assembly of nanoparticles at fluid interfaces is a promising bottom-up approach for the preparation of advanced functional materials and devices. Full realization of its potential requires quantitative understanding of the parameters controlling the self-assembly, the structure of nanoparticles at the interface, the barrier properties of the assembly, and the rate of particle attachment. We argue that models of dynamic surface or interfacial tension (DST) appropriate for molecular species break down when the adsorption energy greatly exceeds the mean energy of thermal fluctuations and validate alternative models extending the application of generalized random sequential adsorption theory to nanoparticle adsorption at fluid interfaces. Using a model colloidal system of hydrophobic, charge-stabilized ethyl cellulose nanoparticles at neutral pH, we demonstrate the potential of DST measurements to reveal information on the energy of adsorption, the adsorption rate constant, and the energy of particle-interface interaction at different degrees of nanoparticle coverage of the interface. These findings have significant implications for the quantitative description of nanoparticle adsorption at fluid interfaces.