화학공학소재연구정보센터
Langmuir, Vol.30, No.26, 7654-7659, 2014
alpha-Gel Formation by Amino Acid-Based Gemini Surfactants
Ternary mixtures being composed of surfactant, long-chain alcohol, and water sometimes form a highly viscous lamellar gel with a hexagonal packing arrangement of their crystalline hydrocarbon chains. This molecular assembly is called "alpha-crystalline phase" or "alpha-gel". In this study, we have characterized alpha-gels formed by the ternary mixtures of amino acid-based gemini surfactants, 1-hexadecanol (C16OH), and water. The surfactants used in this study were synthesized by reacting dodecanoylglutamic acid anhydride with alkyl diamines and abbreviated as 12-GsG-12 (s: the spacer chain length of 2, 5, and 8 methylene units). An amino acid-based monomeric surfactant, dodecanoylglutamic acid (12-Glu), was also used for comparison. At a fixed water concentration the melting point of the alpha-gel increased with increasing C16OH concentration, and then attained a saturation level at the critical mole ratio of 12-GsG-12/C16OH = 1/2 under the normalization by the number of hydrocarbon chains of the surfactants. This indicates that, to obtain the saturated alpha-gel, a lesser amount of C16OH is required for the gemini surfactants than for the monomeric one (the critical mole ratio of 12-Glu/C16OH = 1/3). Small- and wide-angle X-ray scattering measurements demonstrated an increase in the long-range d-spacing of the saturated alpha-gels in the order 12-Glu <12-G8G-12 < 12-G5G-12 < 12-G2G-12. In the three gemini surfactant systems, the decreased spacer chain length resulted in the increased maximum viscosity and elastic modulus of the saturated alpha-gels at a given water concentration. This is caused by the decreased amount of excess water being present outside the alpha-gel structure (or the increased amount of water incorporated between the surfactant alcohol bilayers). To the best of our knowledge, this is the first report focusing on the formation of alpha-gel in gemini surfactant systems.