Macromolecular Rapid Communications, Vol.34, No.21, 1721-1727, 2013
Double-Stimuli-Responsive Spherical Polymer Brushes with a Poly(ionic liquid) Core and a Thermoresponsive Shell
The synthesis of poly(ionic liquid) (PIL) nanoparticles grafted with a poly(N-isopropyl acrylamide) (PNIPAM) brush shell is reported, which shows responsiveness to temperature and ionic strength in an aqueous solution. The PIL nanoparticles are first prepared via aqueous dispersion polymerization of a vinyl imidazolium-based ionic liquid monomer, which is purposely designed to bear a distal atom transfer radical polymerization (ATRP) initiating group attached to the long alkyl chain via esterification reaction. The size of the PIL nanoparticles can be readily tuned from 25 to 120 nm by polymerization at different monomer concentrations. PNIPAM brushes are successfully grafted from the surface of the poly(ionic liquid) nanoparticles via ATRP. The stimuli-responsive behavior of the poly(ionic liquid) nanoparticles grafted with PNIPAM brushes (NP-g-PNIPAM) in aqueous phase is studied in detail. Enhanced colloidal stability of the NP-g-PNIPAM brush particles at high ionic strength compared to pure PIL nanoparticles at room temperature is achieved. Above the lower critical solution temperature (LCST) of PNIPAM, the brush particles remain stable, but a decrease in hydrodynamic radius due to the collapse of the PNIPAM brush onto the PIL nanoparticle surface is observed.