- Previous Article
- Next Article
- Table of Contents
Macromolecular Rapid Communications, Vol.35, No.14, 1238-1254, 2014
Isocyanate- and Phosgene-Free Routes to Polyfunctional Cyclic Carbonates and Green Polyurethanes by Fixation of Carbon Dioxide
The catalytic chemical fixation of carbon dioxide by carbonation of oxiranes, oxetanes, and polyols represents a very versatile green chemistry route to environmentally benign di- and polyfunctional cyclic carbonates as intermediates for the formation of non-isocyanate polyurethane (NIPU). Two synthetic pathways lead to NIPU thermoplastics and thermosets: i) polycondensation of diacarbamates or acyclic dicarbonates with diols or diamines, respectively, and ii) polyaddition by ring-opening polymerization of di- and polyfunctional cyclic carbonates with di- and polyamines. The absence of hazardous and highly moisture-sensitive isocyanates as intermediates eliminates the need for special safety precautions, drying and handling procedures. Incorporated into polymer backbones and side chains, carbonate groups enable facile tailoring of a great variety of urethane-functional polymers. As compared with conventional polyurethanes, ring-opening polymerization of polyfunctional cyclic carbonates affords polyhydroxyurethanes with unconventional architectures including NIPUs containing carbohydrate segments. NIPU/epoxy hybrid coatings can be applied on wet surfaces and exhibit improved adhesion, thermal stability and wear resistance. Combining chemical with biological carbon dioxide fixation affords 100% bio-based NIPUs derived from plant oils, terpenes, carbohydrates, and bio polyols. Biocompatible and biodegradable NIPU as well as NIPU biocomposites hold great promise for biomedical