Materials Science Forum, Vol.389-3, 9-14, 2002
Characterisation and defects in silicon carbide
In this work we present experimental results of several defects in 4H Sic that are of interest both from a fundamental and physical point of view. And also of great importance for device applications utilizing the Sic material. These defects include the temperature stable so called D1 defect, which is created after irradiation. This optical emission has been identified as an isoelectronic defect bound at a hole attractive pseudodonor, and we have been able to correlate this to the electrically observed hole trap HS1 seen in minority carrier transient spectroscopy (MCTS). It also includes the UD1 defect observed using absorption and FTIR and which is believed to be responsible for the semi-insulating behavior of material grown by the High temperature, HTCVD technique. Finally, we have described the formation and proper-ties of critical, generated defect in high power Sic bipolar devices. This is identified as a stacking fault in the Sic basal plane, using mainly white beam synchrotron Xray topography. The stacking fault is both optically and electrically active, by forming extended local potential reduction of the conduction band.