Materials Science Forum, Vol.389-3, 1419-1422, 2002
The effect of hydrogen diffusion in p- and n-type SiC Schottky diodes at high temperatures
We present here the effect of a hydrogen anneal at 600degreesC for Schottky sensor devices based on n- and p-type 4H SiC. The devices have gate contacts of Ta/Pt, or TaSix/Pt. The catalytic metal gate dissociates hydrogen and thus promotes diffusion of hydrogen atoms into the SiC, where the atoms will trap or react with different impurities, defects or surface states. This will change parameters such as the carrier concentrations, the defect density of the material or the surface resistivity at the SiC/SiO2 interface. The current-voltage and the capacitance-voltage characteristics were measured before and after annealing in hydrogen and oxygen containing atmosphere, and the results show a reversible effect in the I-V characteristics.