Materials Science Forum, Vol.426-4, 841-846, 2003
High strain rate - High strain response of an ultrahigh carbon steel containing 1.3% C and 3% Si
The mechanical response of a UHCS-1.3C material deformed at approximately 3000 s(-1) to large strains (60%) has been studied. The influence of three different heat treatments, which resulted in pearlitic, martensitic and tempered martensitic microstructures, on the stress-strain response has also been examined. Failure, at both the macroscopic and the microscopic levels, and the ability of the material to absorb energy in compression have been evaluated. Failure for all heat treatments occurred due to shear localization. However, in the pearlitic condition, extensive buckling of the carbide plates was observed and the UHCS-1.3C material exhibited significant potential for compressive ductility (>60%) and energy absorption due to the distributed buckling of these plates. In the pearlitic condition, localization occurred due to adiabatic shear bands, in which austenite formed. Subsequent cooling produced a divorced-eutectoid transformation with associated deformation, which resulted in a microstructure consisting of 50 to 100 nm sized grains. The results show the large potential for use of UHCS in applications involving dynamic loading.