화학공학소재연구정보센터
Materials Science Forum, Vol.455-456, 520-526, 2004
Nucleation and crystallization of titania nanoparticles in silica titania planar waveguides: A study by low frequency Raman scattering.
SiO(2) (1-x) - TiO(2) (x) waveguides, with the mole fraction x in the range 0.07 - 0.20 and thickness of about 0.4 gm, were deposited on silica substrates by a dip-coating technique. The thermal treatments at 700-900degreesC, used to fully densify the xerogels, produce nucleation of TiO(2) nanocrystals even for the lowest TiO(2) content. The nucleation of TiO(2) nanocrystals and their growth by thermal annealing up to 1300degreesC were studied by waveguide Raman spectroscopy, for the SiO(2) (0.8) - TiO(2) (0.2) composition. By increasing the annealing temperature, the Raman spectrum evolves from that typical of the silica-titania glass to that of anatase, but brookite phase is dominant at intermediate temperatures. In the low frequency region (5-50 cm(-1)) of the Raman spectra, acoustic vibrations of the nanocrystals are observed. From the measured line shapes, we can deduce the size distribution of the particles. The results are compared with those obtained from the line widths in the X-ray diffraction patterns. Nanocrystals with a mean size in the range 4-20 nm are obtained, by thermal annealing in a corresponding range of 800-1300degreesC.