화학공학소재연구정보센터
Materials Science Forum, Vol.471-472, 755-759, 2004
Robust position controller design for linear servo units used in noncircular machining
This paper presents the design and implementation of a robust motion control structure for linear servo units used in noncircular machining. Compared with ball/screw driven system, the controller of the linear motor driven system must provide a high level of disturbance rejection performance, as the system is more sensitive to force disturbances and parameter variations. Thus, in this paper, a robust feedback controller based on disturbance observer is applied to enhance the stiffness and robustness. A magnitude and phase regulating control scheme (MPRC) is proposed to improve the system tracking accuracy, and a simple error feedforward compensator (EFC) further reduces the feedforward control error that result from inaccurate frequency response data. The effectiveness of the proposed controller is demonstrated by experiments.