화학공학소재연구정보센터
Materials Science Forum, Vol.475-479, 333-336, 2005
Compressive properties and energy absorption of hollow sphere aluminum
Manufactured cellular aluminums have been developed for a wide range of automotive applications where weight savings, improved safety, crashworthiness and comfort are required. The plateau deformation behavior of cellular aluminums under compressive loading makes this new class of lightweight materials suitable for energy absorption and comes close to ideal impact absorbers. In the present study, aluminum hollow hemispheres were firstly processed by pressing. Hollow sphere aluminum samples with a body-centered cubic (BCC) packing were then fabricated by bonding together single hollow spheres, which were prepared by adhering together hollow hemispheres. Hollow sphere aluminum samples with various kinds of sphere wall thicknesses of 0.1 mm, 0.3 mm and 0.5 mm but the same outside diameter of 4 mm were investigated by compressive tests. The effects of the sphere wall thickness on the mechanical properties and energy absorption characteristics were investigated.