Materials Science Forum, Vol.475-479, 685-688, 2005
Effect of chromium on the oxidation of a Fe-10Al alloy at 1000 degrees C
The effect of the addition of 5 and 10 at.% Cr on the oxidation of a binary Fe-10 at.% Al alloy (Fe-10Al) was studied in 1 atm 02 at 1000 degrees C. Fe-10Al underwent a very slow initial nearly-parabolic stage followed by a breakaway composed of two subsequent parabolic stages with a smaller rate constant for the final period. The two ternary alloys (Fe-5Cr-10Al and Fe-10Cr-10Al) presented two parabolic stages with final rate constants similar to each other and much lower than that for Fe-10AL The alumina scale developed initially on Fe-10Al was replaced later by a layered scale containing mixtures of Fe and Al oxides plus many Fe-rich oxide nodules. Fe-5Cr-10Al was mostly covered by a thin alumina layer just above the alloy surface with some Fe-rich nodules formed in the beginning of oxidation, which later on were healed by alumina with a large decrease of the oxidation rate. A continuous alumina layer formed on the whole sample surface without any Fe-rich nodule for Fe-10Cr-10Al. Therefore, the addition of chromium is obviously beneficial for the oxidation resistance of Fe-10Al by inhibiting the formation of fast-growing Fe-containing oxides and promoting the development of an exclusive alumina layer. However, the effect of chromium is different from the classical third-element effect.