Materials Science Forum, Vol.475-479, 845-848, 2005
Precipitation behavior and phase stability of intermetallic phases in Fe-Cr-W-Co ferritic alloys
Precipitation behavior of intermetallic phases in ferrite matrix is investigated by transmission electron microscopy (TEM) in Fe-10Cr-1.4W-4.5Co (at%) alloys with and without 0.3at%Si. It is intended to provide basic information for the alloy design of ferritic heat resistant alloys strengthened by intermetallic compounds. In the alloy containing Si, icosahedral quasicrytalline phase (I-phase) is found to precipitate during aging at 873K. It is confirmed that selected area diffraction (SAD) patterns of the precipitates exhibit two-, three- and five-fold symmetry and have diffraction spots in the positions related to the golden section. In the Si-free alloy, the R-phase precipitates instead of I-phase at 873K, and the Laves phase precipitates in both alloys during aging at higher temperature, 973K. The Laves phase formed at 973K transforms to the I-phase in the Si-added alloy but to the R-phase in the Si-free alloy during subsequent aging at 873K. The factors in controlling the phase stability of I-phase, R-phase and Laves phase precipitates in Fe-based alloys are discussed by the atomic size ratio and electron concentration factor (e/a).
Keywords:transmission electron microscopy;quasicrystal;R-phase;Laves phase;ferritic heat resistant steel