화학공학소재연구정보센터
Materials Science Forum, Vol.475-479, 1521-1524, 2005
In-situ fabrication and fracture characteristics of structural gradient Ni/Ni-aluminide//Ti/Ti-aluminide layered materials
Ni/Ni-aluminide//Ti/Ti-aluminide laminate composite, considered as a functionally gradient material, was manufactured by thin foil hot press technique. Thick intermetallic layers of NiAl and TiAl3 were formed by a self-propagating high-temperature synthesis (SHS) reaction, and thin continuous layers of Ni3Al and TiAl were formed by a solid-state diffusion. Fracture resistance with loading along the crack arrester direction is higher than crack divider direction due to the interruption of crack growth in metal layers. The Ni3Al and NiAl intermetallic layer showed cleavage and intergranular fracture behavior, respectively, while the fracture mode of TiAl3 layer was found to be a intragranular cleavage. The debonding between metal and intermetallic layer and the pores were observed in the Ni/Ni-aluminide layers, resulting in the lower fracture resistance.