Materials Science Forum, Vol.492-493, 545-550, 2005
Appraisement of creep properties of 12Cr1MoV steel by Small Punch creep test method
The numerical simulation for the Small Punch creep (SP-C) tests is conducted using a Finite Element method. The objective of the present study is to obtain the deformation states of the SP-C specimen and to estimate the feasibility of SP-C test method for high-temperature creep properties. The emphasis is put on the relationship between the equivalent creep strain and the central deflection of the SP-C specimen. The time history of central deflection and equivalent creep strain is obtained by finite element method and the effects of the load, temperature and material properties on the relationship of central deflection and equivalent creep strain are discussed. From the numerical results, the relationship between the central deflection and the equivalent creep strain is approximately independent of load, temperature, and material properties. As a farther result, the high temperature creep properties of the 12Cr1MoV steel are appraised by numerical simulation. The results are in good agreement with the results from the standard test method. The results indicate that the small punch test technique is an effective method for the evaluation of the high-temperature creep properties of materials.
Keywords:Small Punch creep test;creep properties;equivalent creep strain;equivalent creep stress;creep deflection;finite element analysis