화학공학소재연구정보센터
Materials Science Forum, Vol.514-516, 534-538, 2006
Comparative study of the additional hardening effects of three structural steels
For a safe and reliable design of components, it is needed to study the effects of multiaxial loading and particularly the non-proportional loadings on the fatigue damage. The objective of this paper is to evaluate and compare the additional hardening effects of proportional and non-proportional loading paths. Low-cycle fatigue behaviour of three structural steels: CK45 (ferritic-perlitic microstructure) normalized steel, 42CrMo4 (bainitic microstructure) quenched and tempered steel and stainless steel (austenitic microstructure) X10CrNiS 18 9 are studied under different proportional and non-proportional loading paths and different levels. A series of tests of biaxial low-cycle fatigue composed of tension/compression with static or cyclic torsion were carried out on a biaxial servo-hydraulic testing machine Instron 8088. The experiments showed that the three materials studied have very different additional hardening behaviour, under multiaxial cyclic loading paths. The local cyclic stress/strain states are influenced by the multiaxial loading paths due to interactions between the normal stress and shear stress during cyclic plastic deformation. The microstructure is an important key and has a great influence on the additional hardening. The additional hardening effect is dependent of the loading path and also the intensity of the loading.