화학공학소재연구정보센터
Materials Science Forum, Vol.517, 29-32, 2006
Effects of layer thickness and incident angle variations on DBR reflectivity
In this paper we discussed the relation between depth errors that happened in films growth and incidence angle variation on DBR reflectivity. We assume that there is 10% depth error in high and low index materials, and there are four plus one situations to be considered. Four are combinations of Hi +/- 10% error and Lo +/- 10% error, and no error. Our simulation results show that the depth error makes the reflective band shift and it almost doesn't reduce reflectivity. The thickness error of +/- 10% in (Al0.4Ga0.6N/GaN) DBR structure (15 pairs) at 420nm was 42mn. A theoretical analysis using Transfer Matrix Mode with MATLAB software on the influence of layer thickness and incidence angle variation in vertical-cavity surface-emitting lasers with distributed Bragg reflectors (DBRs) on lasing wavelength is presented. It is shown that changing the thickness of the layers in the DBR mirror by only 10% is sufficient to produce shifts in the peak reflectance wavelength up to +/- 20 nm (for a blue laser at 420nm). This could limit the precision of a desired wavelength, which is its reproducibility.