화학공학소재연구정보센터
Materials Science Forum, Vol.524-525, 569-574, 2006
Effect of laser assistance machining on residual stress and fatigue strength for a bearing steel (100Cr6) and a titanium alloy (Ti 6AI 4V)
The use of Laser Assisted Machining (LAM) can improve different aspects of the machinability of high strength materials. A study was undertaken to determine the optimum cutting parameters and to quantify their influence on fatigue strength according to the type of microstructure created. Two different materials were studied: a bearing steel (100Cr6/AISI 52100) and an aeronautical titanium alloy (Ti6Al4V). In the bearing steel a significant increase of the fatigue resistance was observed due to the transformation of the surface layer into martensite. For the titanium alloy, a slight reduction in the fatigue strength was found as in this case the microstructure and residual stress state of the surface layer was less beneficial. The surface roughness has also been measured and no significant variation has been observed for different laser powers in each material.