화학공학소재연구정보센터
Materials Science Forum, Vol.524-525, 755-760, 2006
Effect of detector width and peak location technique on residual stress determination in case of work-hardened materials
To enhance the fatigue resistance of mechanical components, different surface treatment processes are often applied to put the near surface layer into compression. Surface treatment processes are typically associated with deformation and work-hardening of the material. When applying x-ray diffraction techniques to the characterization of such surfaces, the work-hardening will cause the x-ray diffraction peak width to increase. When peak widths reach high values, the peak tail may extend beyond the active area or window of the multi-channel x-ray detector, in which case the peak is truncated. Subsequent analytical treatment of broad diffraction peaks is troublesome and advanced numerical methods are required to accurately determine the peak position. The following work indicates that when a wider detector is used it is possible to collect the full, non-truncated peak, determine the peak position with a high level of confidence and subsequently, to calculate the residual stress with much improved repeatability and reproducibility.