화학공학소재연구정보센터
Plasma Chemistry and Plasma Processing, Vol.34, No.2, 271-285, 2014
Characterization of Plasma Polymerized Hexamethyldisiloxane Films Prepared by Arc Discharge
Herein, we present a simple method for fabricating plasma polymerized hexamethyldisiloxane films (pp-HMDSO) possessing superhydrophobic characteristics via arc discharge. The pp-HMDSO films were deposited on a soda-lime-silica float glass using HMDSO monomer vapor as a precursor. A detailed surface characterization was performed using scanning electron microscopy and atomic force microscopy. The growth process of the pp-HMDSO films was investigated as a function of deposition time from 30 to 300 s. The non-wetting characteristics of the pp-HMDSO films were evaluated by means of contact angle (CA) measurements and correlated with the morphological characteristics, as obtained from microscopy measurements. The deposited films were found to be nano-structured and exhibited dual-scale roughness with the static CA values close to 170A degrees. Fourier transform infrared spectroscopy analysis was carried out to investigate chemical and functional properties of these films. Methyl groups were identified spectroscopically to be present within the pp-HMDSO films and were proposed to result in the low surface energy of material. The synergy between the dual-scale roughness and low surface energy resulted in the superhydrophobic characteristics of the pp-HMDSO films. A possible mechanism for the pp-HMDSO film formation is proposed.