화학공학소재연구정보센터
Polymer, Vol.55, No.1, 187-194, 2014
Surface and mechanical properties of hydrophobic silica contained hybrid films of waterborne polyurethane and fluorinated polymethacrylate
The surface and mechanical properties of hybrid films of waterborne polyurethane (WPU) and fluorinated polymethacrylate (FPMA), and high-hydrophobic silica (SiO2) contained hybrid films of FPMA/WPU were investigated. X-ray photoelectron spectroscopy confirmed that the surfaces of hybrid films exhibited notable fluorine enrichment. Scanning electron microscopy observation demonstrated that micro-scale rough structures consisted of sub-micro papillae and micro-scale wrinkles formed on the surfaces of FPMA/WPU. This was attributed to the enhanced phase separation of WPU and the incompatibility of low-surface-energy FPMA and WPU. Colloidal SiO2 was modified by polydimethylsiloxane and the modified SiO2 was reactive and high-hydrophobic. After the addition of reactive SiO2, the rough structures became micro-scale striped wrinkles studded with nano- and sub-micro papillae formed by the high-hydrophobic SiO2. The combination of the fluorine enrichment and the rough structures accounted for the high hydrophobic FPMA/WPU film and superhydrophobic SiO2/FPMA/WPU film. (C) 2013 Elsevier Ltd. All rights reserved.