Polymer Bulletin, Vol.71, No.5, 1131-1152, 2014
Influence of microstructure and flexibility of maleated styrene-b-(ethylene-co-butylene)-b-styrene rubber on the mechanical properties of polyamide 12
The present investigation deals with the mechanical and morphological properties of binary polyamide 12/maleic anhydride-grafted styrene-b-(ethylene-co-butylene)-b-styrene rubber (PA12/SEBS-g-MA) blends at varying dispersed phase (SEBS-g-MA) concentrations. Tensile behavior, impact strength and crystallinity of these blend systems were evaluated. Influence of microstructure, dispersed phase particle size, and ligament thickness on the impact toughness of the blend was studied. DSC data indicated an increase in crystallinity of PA12 in the blends. Tensile modulus and strength decreased while impact strength and elongation-at-break increased with the elastomer concentration. The enhanced properties were supported by interphase adhesion between the grafted maleic groups of rubber with polar moiety of polyamide 12. Analysis of the tensile data employing simple theoretical models showed the variation of stress concentration effect with blend composition.