화학공학소재연구정보센터
Polymer Bulletin, Vol.71, No.9, 2219-2234, 2014
Compatibilization and properties of ethylene vinyl acetate copolymer (EVA) and thermoplastic polyurethane (TPU) blend based foam
Ethylene vinyl acetate copolymer/thermoplastic polyurethane (EVA/TPU) blending foams are rarely reported so far because of their poor compatibility, and addition of a compatibilizer to the blend system was our major interest, which can improve interfacial adhesion between the two phases. In this paper, TPU-grafted EVA (EVA-g-TPU), as a compatibilizer, was simply prepared using maleic anhydride-grafted EVA (EVA-g-MAH) and 4,4' diamino diphenyl methane in the mixing process of TPU and EVA matrix. Fourier transform infrared spectroscopy and differential scanning calorimetry were used to investigate the structures of EVA-g-TPU and the interfacial reaction in the mixing process, and the effect of EVA-g-TPU on compatibilization between the two phases of EVA/TPU blends was investigated using scanning electron microscopy. Finally, EVA/EVA-g-TPU/TPU foams based on the good compatibility of the resin blends were prepared, and the physical properties directly related to the compatibility were investigated as a function of the theoretical quantity (molar mass) of EVA-g-TPU (n (EVA-g-TPU)) in the foams. Moreover, the tensile strength, elongation at break, tear strength and compression set were improved by 19.0, 9.3, 43.6 and 7.5 %, respectively. Overall, EVA/EVA-g-TPU/TPU foams with excellent mechanical properties were obtained without sacrificing other important physical properties (lower density etc.) through popular and friendly means in this research.