화학공학소재연구정보센터
Renewable Energy, Vol.30, No.11, 1689-1712, 2005
Performance analysis of dehumidification rotating wheel using liquid desiccant
In the present work, theoretical and experimental evaluation of the effect of bed configuration and operating conditions on the performance of desiccant dehumidification system has been carried out. A new rotating absorption disk has been designed and constructed to be tested in the experimental work. The desiccant wheel has a cylindrical shape of 50-cm diameter and 10 cm thickness. The flow area of this bed is consisted of 350 narrow slots, which are uniformly distributed over the cross section of the cylindrical bed. Each slot has a cylindrical shape and constructed from a steel spring of 100 mm length and 20 mm inside diameter. To form the absorbing surface in the bed, each spring is coated with a thick cloth layer impregnated with lithium chloride solution, which is used as the working desiccant in these experiments. In the theoretical part of this study, a mathematical model has been developed where its output results are compared with the experimental data. The effect of different design parameters and operating conditions on the absorption and regeneration processes is discussed. The effect of regeneration air temperature, the process air and regeneration air inlet humidity, the rotational speed, the process and regeneration air velocity (or flow rates), the bed length, etc. on the amount of water absorbed/desorbed in a cycle is investigated. For the specific bed design parameters, actual recorded data show that an amount of 95 g of water can be absorbed in the absorption cycle per hour. This value changes with varying the operating conditions. From the theoretical investigation, it is found that at regeneration temperature of 85 degrees C, the amount of water absorbed is nearly equal to the amount of water desorbed (i.e. equilibrium condition) for a complete cycle. It is seen also that for moderate operating conditions (50% RH, 30 degrees C) and lower regeneration temperature which is suitable for solar energy application, the reduction in the humidity ratio of the process air reaches about 13% of its initial value. Finally, comparisons between theoretical and experimental results show good agreement. (c) 2005 Elsevier Ltd. All rights reserved.