화학공학소재연구정보센터
Renewable Energy, Vol.34, No.3, 928-936, 2009
Optimization of operational planning for wind/hydro hybrid water supply systems
Water supply systems (WSS) frequently present high-energy consumption values, which correspond to the major expenses of these systems. Energy costs are a function of its real consumption and of the variability of the daily energy tariff. This paper presents a model of optimization for the energy efficiency in a water supply system. The system is equipped with a pump station and presents excess of available energy in the gravity branch. First, a water turbine is introduced in the system in order to use this excess of hydraulic available energy. Then, an optimization method to de. ne the pump operation planning along the 24 h of simulation, as well as the analysis of the economic benefits resulting from the profit of wind energy to supply the water pumping, while satisfying the system constraints and population demands, is implemented, in order to minimize the global operational costs. The model, developed in MATLAB, uses linear programming and provides the planning strategy to take in each time step, which will influence the following hours. The simulation period considered is one day, sub-divided in hourly time steps. The rules obtained as output of the optimization procedures are subsequently introduced in a hydraulic simulator (e.g.EPANET), in order to verify the system behaviour along the simulation period. The results are compared with the normal operating mode (i.e. without optimization algorithm) and show that energy cost's savings are achieved dependently of the initial reservoir levels or volume. The insertion of the water turbine also generates significant economical benefits for the water supply system. (C) 2008 Elsevier Ltd. All rights reserved.