화학공학소재연구정보센터
Renewable Energy, Vol.36, No.1, 272-281, 2011
Experimental investigation of the influence of blade height and blade number on the performance of low head axial flow turbines
Investigations regarding the influence of design parameters in low head axial flow turbines like blade profiles, blade height and blade number for micro-hydro application continue to be inadequate, even though there is a need and potential for the application of such turbines. This inadequacy provides a good ground to make a detailed experimental study to characterize these influences. The paper presents a holistic theoretical model that attempts to bring out a functionality of the internal performance parameters of the runner and attempts to establish a physical relationship between the two design parameters (blade height and blade number) and the performance parameters. The experimental results on 3 runners showed that with an increase in the number of blades, the efficiency of the runner dropped drastically due to the change in direction of the relative flow vector at the runner exit, which decreased the net rotational momentum and increased the axial flow velocity. The decrease of blade height on the other hand decreased the overall runner loss coefficient quite drastically but this could not result in major performance gains. The study concluded that the influence of blade number is more dominating compared to that of the blade height and that choice of blade number should be carefully made. On the hydraulic level, the study found interesting effects like the slip phenomenon and loss mechanisms within the runner. The paper also looks into the possible errors within the theoretical model developed and the extent of their influence on the conclusions. The paper suggests more experimental studies to separately study the effects of blade number and blade height. It further makes a strong case to initiate a computational work to validate all the experimental findings, fill the gaps in the theoretical model and use it as an optimization and standardization tool for axial flow turbines in the specialized application of micro-hydro. (c) 2010 Elsevier Ltd. All rights reserved.