Korean Journal of Chemical Engineering, Vol.31, No.10, 1786-1791, October, 2014
Catalytic conversion of cellulose into 5-hydroxymethylfurfural over chromium trichloride in ionic liquid
E-mail:
An efficient method for converting cellulose into 5-hydroxymethylfurfural (5-HMF) using an inexpensive ionic liquid tetrabutylammonium chloride (TBAC) and relatively low-toxicity catalyst of chromium (III) trichloride (CrCl3·6H2O) was developed. The effects of hydrochloric acid loading, catalyst dosage, reaction temperature and time on the yield of 5-HMF were surveyed to achieve optimal reaction conditions. A 5-HMF yield of 43.7% was obtained within 90 min at 140 ℃using oil-bath heating. Glucose and starch were also investigated as feedstock to produce 5-
HMF in TBAC/CrCl3·6H2O system, in which the 5-HMF yield was considerable. After 5-HMF was extracted, TBAC/CrCl3·6H2O could be used for several runs.
- Morales-delaRosa S, Campos-Martin JM, Fierro JLG, Chem. Eng. J., 181, 538 (2012)
- Dutta S, RSC Adv., 33, 12575 (2012)
- Guo XC, Cao Q, Jiang YJ, Guan J, Wang XY, Mu XD, Carbohydr. Res., 351, 35 (2012)
- Lin Y, Tanaka S, Appl. Microbiol. Biotechnol., 69(6), 627 (2006)
- Chun JA, Lee JW, Yi YB, Hong SS, Chung CH, Korean J. Chem. Eng., 27(3), 930 (2010)
- Hansen TS, Woodley JM, Riisager A, Carbohydr. Res., 344, 2568 (2009)
- Yu S, Brown HM, Huang XW, Zhou XD, Amonette JE, Zhang ZC, Appl. Catal. A: Gen., 361(1-2), 117 (2009)
- Tian J, Wang JH, Zhao S, Jiang CY, Zhang X, Wang XH, Cellulose, 17, 587 (2010)
- Zhou LL, Liang RJ, Ma ZW, Wu TH, Wu Y, Bioresour. Technol., 129, 450 (2013)
- Tan MX, Zhao L, Zhang YG, Biomass Bioenerg., 35(3), 1367 (2011)
- Yang FL, Liu QS, Bai XF, Du YG, Bioresour. Technol., 102(3), 3424 (2011)
- Chheda JN, Roman-Leshkov Y, Dumesic JA, Green Chem., 9, 342 (2007)
- Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K, Ind. Eng. Chem. Res., 39(8), 2883 (2000)
- Zhang ZH, Zhao ZBK, Bioresour. Technol., 101(3), 1111 (2010)
- Rogers RD, Seddon KR, Science, 302, 792 (2003)
- Wang XJ, Li HQ, Cao Y, Tang Q, Bioresour. Technol., 102(17), 7959 (2011)
- Swatloski RP, Spear SK, Holbrey JD, Rogers RD, J. Am. Chem. Soc., 124(18), 4974 (2002)
- Liu B, Zhang ZH, Zhao ZK, Chem. Eng. J., 215, 517 (2013)
- Hu L, Sun Y, Lin L, Ind. Eng. Chem. Res., 51(3), 1099 (2012)
- Wang P, Yu HB, Zhan SH, Wang SQ, Bioresour. Technol., 102(5), 4179 (2011)
- Li CZ, Zhao ZK, Wang AQ, Zheng MY, Zhang T, Carbohydr. Res., 345, 1846 (2010)
- Zhao H, Holladay JE, Brown H, Zhang ZC, Science, 316, 1597 (2007)
- Cao Q, Guo XC, Yao SX, Guan J, Wang XY, Mu XD, Zhang DK, Carbohydr. Res., 346, 956 (2011)
- Hu L, Sun Y, Lin L, Liu SJ, J. Taiwan Inst. Chem. E., 43, 718 (2012)
- Zhang YM, Pidko EA, Hensen EJM, Chem. Eur. J., 17, 5281 (2011)
- Chheda JN, Roman-Leshkov Y, Dumesic JA, Green Chem., 9, 342 (2007)
- Li CZ, Zhao ZK, Adv. Synth. Catal., 349, 1847 (2007)
- Horvat J, Klai B, Metelko B, Sunjic V, Tetrahedron Lett., 26, 2111 (1985)
- Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P, Ros P, Avignon G, Appl. Catal. A: Gen., 145(1-2), 211 (1996)
- Stahlberg T, Rodriguez-Rodriguez S, Fristrup P, Riisager A, Chem. Eur. J., 17, 1456 (2011)
- Qi XH, Watanabe M, Aida TM, Smith RL, Catal. Commun., 9, 2244 (2008)
- Amarasekara AS, Ebede CC, Bioresour. Technol., 100(21), 5301 (2009)
- Fan CY, Guan HY, Zhang H, Wang JH, Wang ST, Wang XH, Biomass Bioenerg., 35(7), 2659 (2011)
- Qi XH, Watanabe M, Aida TM, Smith RL, Green Chem., 11, 1327 (2009)
- Qi XH, Watanabe M, Aida TM, Smith RL, ChemSusChem, 3, 1071 (2010)