화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.10, 1786-1791, October, 2014
Catalytic conversion of cellulose into 5-hydroxymethylfurfural over chromium trichloride in ionic liquid
E-mail:
An efficient method for converting cellulose into 5-hydroxymethylfurfural (5-HMF) using an inexpensive ionic liquid tetrabutylammonium chloride (TBAC) and relatively low-toxicity catalyst of chromium (III) trichloride (CrCl3·6H2O) was developed. The effects of hydrochloric acid loading, catalyst dosage, reaction temperature and time on the yield of 5-HMF were surveyed to achieve optimal reaction conditions. A 5-HMF yield of 43.7% was obtained within 90 min at 140 ℃using oil-bath heating. Glucose and starch were also investigated as feedstock to produce 5- HMF in TBAC/CrCl3·6H2O system, in which the 5-HMF yield was considerable. After 5-HMF was extracted, TBAC/CrCl3·6H2O could be used for several runs.
  1. Morales-delaRosa S, Campos-Martin JM, Fierro JLG, Chem. Eng. J., 181, 538 (2012)
  2. Dutta S, RSC Adv., 33, 12575 (2012)
  3. Guo XC, Cao Q, Jiang YJ, Guan J, Wang XY, Mu XD, Carbohydr. Res., 351, 35 (2012)
  4. Lin Y, Tanaka S, Appl. Microbiol. Biotechnol., 69(6), 627 (2006)
  5. Chun JA, Lee JW, Yi YB, Hong SS, Chung CH, Korean J. Chem. Eng., 27(3), 930 (2010)
  6. Hansen TS, Woodley JM, Riisager A, Carbohydr. Res., 344, 2568 (2009)
  7. Yu S, Brown HM, Huang XW, Zhou XD, Amonette JE, Zhang ZC, Appl. Catal. A: Gen., 361(1-2), 117 (2009)
  8. Tian J, Wang JH, Zhao S, Jiang CY, Zhang X, Wang XH, Cellulose, 17, 587 (2010)
  9. Zhou LL, Liang RJ, Ma ZW, Wu TH, Wu Y, Bioresour. Technol., 129, 450 (2013)
  10. Tan MX, Zhao L, Zhang YG, Biomass Bioenerg., 35(3), 1367 (2011)
  11. Yang FL, Liu QS, Bai XF, Du YG, Bioresour. Technol., 102(3), 3424 (2011)
  12. Chheda JN, Roman-Leshkov Y, Dumesic JA, Green Chem., 9, 342 (2007)
  13. Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K, Ind. Eng. Chem. Res., 39(8), 2883 (2000)
  14. Zhang ZH, Zhao ZBK, Bioresour. Technol., 101(3), 1111 (2010)
  15. Rogers RD, Seddon KR, Science, 302, 792 (2003)
  16. Wang XJ, Li HQ, Cao Y, Tang Q, Bioresour. Technol., 102(17), 7959 (2011)
  17. Swatloski RP, Spear SK, Holbrey JD, Rogers RD, J. Am. Chem. Soc., 124(18), 4974 (2002)
  18. Liu B, Zhang ZH, Zhao ZK, Chem. Eng. J., 215, 517 (2013)
  19. Hu L, Sun Y, Lin L, Ind. Eng. Chem. Res., 51(3), 1099 (2012)
  20. Wang P, Yu HB, Zhan SH, Wang SQ, Bioresour. Technol., 102(5), 4179 (2011)
  21. Li CZ, Zhao ZK, Wang AQ, Zheng MY, Zhang T, Carbohydr. Res., 345, 1846 (2010)
  22. Zhao H, Holladay JE, Brown H, Zhang ZC, Science, 316, 1597 (2007)
  23. Cao Q, Guo XC, Yao SX, Guan J, Wang XY, Mu XD, Zhang DK, Carbohydr. Res., 346, 956 (2011)
  24. Hu L, Sun Y, Lin L, Liu SJ, J. Taiwan Inst. Chem. E., 43, 718 (2012)
  25. Zhang YM, Pidko EA, Hensen EJM, Chem. Eur. J., 17, 5281 (2011)
  26. Chheda JN, Roman-Leshkov Y, Dumesic JA, Green Chem., 9, 342 (2007)
  27. Li CZ, Zhao ZK, Adv. Synth. Catal., 349, 1847 (2007)
  28. Horvat J, Klai B, Metelko B, Sunjic V, Tetrahedron Lett., 26, 2111 (1985)
  29. Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P, Ros P, Avignon G, Appl. Catal. A: Gen., 145(1-2), 211 (1996)
  30. Stahlberg T, Rodriguez-Rodriguez S, Fristrup P, Riisager A, Chem. Eur. J., 17, 1456 (2011)
  31. Qi XH, Watanabe M, Aida TM, Smith RL, Catal. Commun., 9, 2244 (2008)
  32. Amarasekara AS, Ebede CC, Bioresour. Technol., 100(21), 5301 (2009)
  33. Fan CY, Guan HY, Zhang H, Wang JH, Wang ST, Wang XH, Biomass Bioenerg., 35(7), 2659 (2011)
  34. Qi XH, Watanabe M, Aida TM, Smith RL, Green Chem., 11, 1327 (2009)
  35. Qi XH, Watanabe M, Aida TM, Smith RL, ChemSusChem, 3, 1071 (2010)