화학공학소재연구정보센터
Rheologica Acta, Vol.53, No.5-6, 373-384, 2014
Rheology modification of montmorillonite dispersions by colloidal silica
We have studied the effect of additions of both anionic and cationic spherical silica colloids of different sizes on the rheology of dispersions of a well-characterised montmorillonite clay, SWy-2. The systems have been studied above and below the critical hydrodynamic overlap concentration, c*, of the clay. For dispersions at c < c* on replacement of similar to 10 % w/w of the clay content by silica, it was found that whereas a cationic silica additive transformed a liquid-like, non-gelling montmorillonite dispersion into a substantial gel, anionic silica destroyed any nascent structure in the fluids, reducing the effective viscosity and virtually eliminating the rheological hysteresis characteristic of structured fluids. On the other hand, in the regime of c > c*, replacement of similar to 10 % w/w of the clay content by silica leads to enhancements of all the rheological parameters characteristic of a gelling system, for the addition of both anionic and cationic silica. A simple tentative microstructural model for this complex behaviour is presented. This work, alongside our previous studies, confirms significant rheological modification by the addition of small quantities of nanoparticles as a general phenomenon of clay-colloid systems. It further suggests that viscosity enhancement and control of the rates of sol-gel transitions for product applications can be achieved using relatively low-cost, commercially available materials, such as silica nanoparticles and natural clays of different mineralogy.