Solid-State Electronics, Vol.89, 76-80, 2013
Improved ohmic contact of Ga-Doped ZnO to p-GaN by using copper sulfide intermediate layers
Copper sulfide (CuS) was used as the intermediate layer to build ohmic contact of Ga-Doped ZnO (GZO) transparent conduction layer (TCL) to p-GaN. The CuS and GZO layers were prepared by thermal evaporation and RF magnetron sputtering, respectively. Although the GZO-only contacts to p-GaN exhibit nonlinear behavior, ohmic contact with a specific contact resistance of 1.6 x 10(-2) Omega cm(2) has been realized by inserting 3 nm CuS layer between GZO and p-GaN. The optical transmittance of CuS/GZO film was measured to be higher than 80% in the range of 450-600 nm wavelength. The possible mechanism for the ohmic contact behavior can be attributed to the increased hole concentration of p-GaN surface induced by CuS films after annealing. The forward voltage of LEDs with CuS/GZO TCL has been reduced by 1.7 Vat 20 mA and the output power has been increased by 29.6% at 100 mA compared with LEDs without CuS interlayer. These results indicated that using CuS intermediate layer could be a potential ohmic contact method to realize high-efficiency LEDs. (C) 2013 Published by Elsevier Ltd.