화학공학소재연구정보센터
Nano Today, Vol.8, No.6, 577-597, 2013
Metal-organic frameworks in fuel cell technologies
The human appetite for energy is constantly growing and becoming increasingly difficult to satiate. Fossil fuels are quickly becoming unsatisfactory substrates due to the undesirable side effect of pollution and their finite expectancy. Over the past decade, numerous important technological advances in nanotechnology have opened up new frontiers in materials science and engineering, leading to the creation of new materials to meet the energy challenge. Metal-organic frameworks (MOFs), in particular, have proven to be indispensable for clean and efficient energy conversion as well as storage in fuel cells. MOFs offer several advantages as electrocatalysts, electrolyte membranes, and fuel storage materials-they possess remarkable design flexibility, ultra-large surface-to-volume ratios, and they allow functionalization with multivalent ligands and metal centers to increase avidity for fuel cells. Considerable efforts have been made to utilize the unique properties of MOFs as energy materials in developing high performance fuel cells. This article reviews the progress in the research and development of MOFs for applications in hydrogen fuel cells with an emphasis on fuel generation, catalysts for cathode, electrolyte membranes, and H-2 storage, along with some discussion on challenges and perspectives in this exciting and promising field. (C) 2013 Elsevier Ltd. All rights reserved.