Reactive & Functional Polymers, Vol.72, No.12, 931-938, 2012
A new series of cross-linked (meth)acrylate polymer electrolytes for energy storage
A series of methacrylate-crosslinked polymers were investigated as potential polymer electrolytes for energy storage application. Methacrylate ester crosslinkers (25-50 mol.%) with different spacer lengths and MMA as comonomer were polymerised into thin films. Mixtures of ethylene carbonate and propylene carbonate (EC/PC) or alternatively the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)imide (EMIM TFSI), both doped with lithium bis(trifluoromethane)sulfonimide (LiTFSI), fulfilled the role of electrolyte and porogen simultaneously. Ionic conductivity increased with increasing porogen content, Li ion concentration, and decreasing amounts of crosslinker (maximum values: 0.5 mS/cm (EC/PC) and 4.5 mS/cm (EMIM TFSI)). Thin films with permanent porosity were obtained for both electrolyte systems. The flexibility of the films increased with a lower concentration of crosslinker or the choice of a crosslinker with a longer spacer. The relationship between pore size, pore morphology, glass transition temperature and ionic conductivity on the other hand was complex and did not exhibit distinct trends. High thermal stability, ionic conductivity and tunable mechanical properties make these polymer thin films attractive candidates as in situ filled Li ion battery separator films either preformed or directly printed. (c) 2012 Elsevier Ltd. All rights reserved.
Keywords:Ionic conductivity;Crosslinked polymer;Polymer electrolyte;Precipitation polymerisation;Energy storage